
 Quantum tunneling, blackbody spectrum and non-logarithmic entropy correction for Lovelock

black holes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP11(2009)073

(http://iopscience.iop.org/1126-6708/2009/11/073)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:31

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/11
http://iopscience.iop.org/1126-6708/2009/11/073/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
1
(
2
0
0
9
)
0
7
3

Published by IOP Publishing for SISSA

Received: August 24, 2009

Accepted: November 1, 2009

Published: November 17, 2009

Quantum tunneling, blackbody spectrum and

non-logarithmic entropy correction for Lovelock

black holes

Rabin Banerjee and Sujoy Kumar Modak

S.N. Bose National Centre for Basic Sciences,

Block-JD, Sector-III, Salt Lake City, Kolkata-700098, India

E-mail: rabin@bose.res.in, sujoy@bose.res.in

Abstract: We show, using the tunneling method, that Lovelock black holes Hawking

radiate with a perfect blackbody spectrum. This is a new result. Within the semiclassi-

cal (WKB) approximation the temperature of the spectrum is given by the semiclassical

Hawking temperature. Beyond the semiclassical approximation the thermal nature of the

spectrum does not change but the temperature undergoes some higher order corrections.

This is true for both black hole (event) and cosmological horizons. Using the first law

of thermodynamics the black hole entropy is calculated. Specifically, the D-dimensional

static, chargeless black hole solutions which are spherically symmetric and asymptotically

flat, AdS or dS are considered. The interesting property of these black holes is that their

semiclassical entropy does not obey the Bekenstein-Hawking area law. Furthermore, it is

found that the leading correction to the semiclassical entropy for these black holes is not

logarithmic and next to leading correction is also not inverse of horizon area. This is in

contrast to the black holes in Einstein gravity. The modified result is due to the presence of

Gauss-Bonnet term in the Lovelock Lagrangian. For the limit where the coupling constant

of the Gauss-Bonnet term vanishes one recovers the known correctional terms as expected

in Einstein gravity. Finally we relate the coefficient of the leading (non-logarithmic) cor-

rection with the trace anomaly of the stress tensor.
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1 Introduction

The study of black holes is one of the rich and modern subjects of physics, thanks to

Einstein’s theory of general relativity of gravitation. The special behavior of the black hole

event horizon together with nontrivial aspects of space-time infinities have created a lot

of interest in this subject even within classical gravity. After incorporating the quantum

behavior of the fields propagating in a fixed curved background, Hawking (1975) [1] found

that black holes were not really black as they were believed to be, rather they emit all kinds

of particles with a perfect black body spectrum. His invention was inspired by the earlier

works of Bekenstein [2]. This remarkable discovery together with the first law of black hole

mechanics [3] established a strong connection with the first law of thermodynamics. Using

this one can identify the black hole entropy as one quarter of it’s horizon area. This is

known as the celebrated “Bekenstein-Hawking area law”, given by SBH = A
4G~

. In a recent

work [4] we have made an analysis based on a purely thermodynamical viewpoint without

using any analogy with the “first law of black hole mechanics”. Considering the black hole

entropy as a state function, a systematic calculation naturally led to the known area law.

All known black holes in Einstein gravity in any dimension satisfy the area law. These

black hole solutions are generally found by solving the Einstein field equation which does

not contain any higher curvature term (since the Einstein-Hilbert action contains the Ricci

scalar as the only scalar curvature). But one can always construct scalar curvatures by con-

sidering higher curvature terms and include those in the starting Lagrangian to generalize

the Einstein-Hilbert action. Lovelock Lagrangian (2.1) is one such natural generalization

which is a sum over all such higher curvature terms with the Einstein-Hilbert and cosmo-

logical terms in the lowest order. The theory which includes only the first nontrivial higher

curvature (Gauss-Bonnet) term to the other two lowest order terms in the Lagrangian is

called the Einstein-Gauss-Bonnet (EGB) theory. In the equation of motion, obtained by

varying the new action, one finds the Einstein equation modified by an extra part. Black

hole solutions corresponding to this new equation of motion are called Lovelock black holes.

In this paper we shall be dealing with the chargeless, static Lovelock black holes of the

EGB theory [5–12]. The causal structures of Lovelock black hole spacetimes, which de-

pend on the choice of parameters within it, sometime show some drastic differences with

the black holes in Einstein gravity. An interesting property of such Lovelock black holes is

that they do not obey the usual semiclassical area law. The presence of the Gauss-Bonnet

term in the action adds an extra additive term which can be written as a function of the

horizon area. However, when the coupling constant of the Gauss-Bonnet term vanishes one

recovers the standard area law again.

Finding the corrections to the semiclassical Bekenstein-Hawking entropy, which can

be very significant in Planck scale, has drawn a lot of interest these days. There exist

several approaches to find these corrections. These are based on field theory [13], quantum

geometry [14], statistical mechanics [15], Cardy formula [16], brick wall method [17] and

tunneling method [4, 18–21]. Despite the diversity among the approaches they all agree on

the logarithmic correction as the leading correction to the area law.1 The only distinction

1For an extensive list of papers on logarithmic correction see [22].
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occurs in the normalisation of the logarithmic term. While all these papers were confined

to the black holes of Einstein gravity, surprisingly there is no such result which discusses

possible quantum corrections to the semiclassical entropy for general Lovelock black holes.

Furthermore, although it is usually considered that Lovelock black holes Hawking radi-

ate, there is no analysis which directly yields the blackbody spectrum of radiation. The

motivation of this paper is to address these issues.

Here we show, using the tunneling mechanism, that Lovelock black holes Hawking

radiate both scalar particles and fermions with a perfect blackbody spectrum. The tem-

perature of the radiation exactly matches with the semiclassical Hawking temperature of a

black hole. Though tunneling method is widely used to calculate the semiclassical Hawking

temperature of a black hole there was a glaring omission since it failed to yield directly

the blackbody spectrum. However in a recent collaborative work involving one of us [23]

this gap was filled and the blackbody distribution was reproduced in this mechanism, in

the context of Einstein gravity. This work followed from a reformulation of the tunneling

phenomena proposed in [24]. In this paper we not only generalise these methods for the

black hole horizon but also for the cosmological horizon corresponding to arbitrary D-

dimensional spacetimes in Lovelock gravity. We then extend our method by going beyond

the semiclassical approximation. It is shown that in presence of higher order corrections

to the WKB ansatz the nature of the spectrum does not change. The spectrum remains

purely thermal but the temperature receives higher order corrections to its semiclassical

value. This is true for both the black hole (event) and cosmological horizons.

We study the thermodynamic properties of three different chargeless, static black holes

in arbitrary D- dimensions which are asymptotically flat, AdS and dS. Using the first law of

thermodynamics, the entropy is calculated. The lowest order contribution just reproduces

the semiclassical expressions [8, 10, 12] for the entropy which are different from the area law

found in Einstein gravity. Next, it is found that the leading correction to the semiclassical

value is not logarithmic and next to leading correction is also not inverse of horizon area in

general. The presence of the Gauss-Bonnet coupling, therefore, modifies the results of black

holes in Einstein gravity in a nontrivial manner. In the limit where the coupling constant

vanishes the familiar logarithmic and inverse horizon area terms reappear, as expected in

Einstein gravity. The coefficient of the leading correction for each case is related with the

trace anomaly of the stress tensor in D- dimensions.

To put our analysis in a proper perspective we recall that Hawking radiation in the

tunneling picture is usually described by two methods, namely, the radial null geodesic

method [25] and the Hamilton-Jacobi method [26]. The second variant is also known as the

method of complex path. A reformulation of these conventional approaches was necessary

to yield the blackbody spectrum. Using this reformulation the modified spectrum for

Lovelock black holes is calculated by going beyond the semiclassical approximation from

which the corrected Hawking temperature also gets identified. The use of the first law of

thermodynamics then leads to the corrected entropy.

We organize this paper in the following way. In section 2 we introduce Lovelock black

holes and discuss some of their properties. In section 3 we derive the blackbody spectrum of

Hawking radiation for Lovelock black holes. Here we consider the radiation from both black
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hole (event) horizon and also from the cosmological horizon. The semiclassical Hawking

temperatures are reproduced for different spacetimes. Section 4 is used for the calcula-

tion of the modified radiation spectrum by going beyond the semiclassical approximation.

The corrected Hawking temperatures are found for different spacetimes. In section 5 the

corrected entropy is calculated for each spacetime. The standard semiclassical expressions

for the temperature and entropy are also reproduced in these sections. The relation of

the coefficient of the leading correction to the trace anomaly is established in section 6.

Lastly we give our concluding remarks in section 7. We give a detailed description of our

notations and definitions in three appendices A, B and C.

2 Lovelock black holes

Lovelock gravity is the most natural generalization of Einstein gravity in higher dimensions.

Lovelock Lagrangian is the sum of dimensionally extended Euler densities, given by [28, 29]

L =
√−g

m=n
∑

m=0

cmLm, (2.1)

where,

Lm = 2−mδµ1ν1......µmνm

α1β1......αmβm
Rα1β1

µ1ν1
. . . . . . Rαmβm

µmνm
. (2.2)

The generalized Kronecker δ-function is totally antisymmetric in both sets of indices,

δµ1ν1......µmνm

α1β1......αmβm
=

1

m!
δµ1ν1......µmνm

[α1β1......αmβm]. (2.3)

The coupling constants cm have dimensions of [length]2m−D. Let us first introduce the

different terms in the Lovelock Lagrangian (2.1). The first term (L0) is usually set to

unity and therefore c0 represents the cosmological constant (Λ). An explicit computation

yields L1 = R which represents the standard Einstein-Hilbert term while L2 = (R2 +

RαβµνRαβµν−4RµνR
µν) is the Gauss-Bonnet term. The Gauss-Bonnet term is a topological

invariant in four dimensions and has nontrivial effects for D > 4. The theory involving

only these three terms is known as Einstein-Gauss-Bonnet (EGB) theory. The interesting

property of the Lovelock Lagrangian is that despite the presence of the Riemann tensor

in the Lovelock Lagrangian, the equation of motion does not contain any derivative of

Riemann tensor (i.e. only upto second derivative of the metric tensor). In this sense

Lovelock gravity is very similar to Einstein gravity since in Einstein equation one has

terms only upto second derivative of the metric tensor. Also, this theory is known to

be free of ghosts when expanding around a flat space [5] thereby evading any problems

with unitarity.

In the present paper we shall deal with all the chargeless static black hole solutions of

EGB theory. The black hole solutions characterized by the mass parameter (M) only can

be categorized in three different classes. One of them is the asymptotically flat solution

excluding the cosmological constant, whereas, the other two are de Sitter and anti-de Sitter

solutions depending on the sign of the cosmological constant when it is included. In the next

– 4 –
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section we give a collective information and comparison among the behaviour and thermo-

dynamic properties of these black holes. These results are already present in the literature

but we shall bring them together to construct the platform for the remaining work.

2.1 Spherically symmetric, asymptotically flat black holes

Considering only the Einstein-Hilbert and the Gauss-Bonnet term in (2.1) we find the

simplest higher-derivative Lovelock action which is given by

I =
1

16πG

∫

dDx
√−g

(

R +
λ

2
(R2 + RαβµνRαβµν − 4RµνRµν)

)

(2.4)

where λ (=2c2 in (2.1)) is the coupling constant of the Gauss-Bonnet term having dimension

of (length)2 and is positive in the heterotic string theory [5]. The spherically symmetric

vacuum solution of the equation of motion corresponding to the above action is given

by [5–8]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

D−2, (2.5)

with

f(r) = 1 +
r2

λ̄

[

1 + ǫ

(

1 +
2ωλ̄

rD−1

)

1
2

]

, (2.6)

where λ̄ = λ(D− 3)(D− 4). The constant ǫ has the value of ±1. Only ǫ = −1 corresponds

to an asymptotically flat metric. Here ω appears as an integration constant and for ǫ = −1

(i.e. for the asymptotically flat case) it is related to the mass of the black hole as [8]

M =
(D − 2)AD−2

16πG
ω, (2.7)

where AD−2 is the (D − 2) dimensional volume element of the hypersurface parametrized

by the angular variables in (2.5). The positions of the horizons are found by setting

gtt(r = rh) = grr(r = rh) = 0, which leads to the polynomial

rD−3
h +

λ̄

2
rD−5
h − ω = 0. (2.8)

Thus the real roots of (2.8) give the positions of horizons and the largest root of them is

the event horizon while the others are inner Cauchy horizons. Putting the value of the

integration constant ω from (2.8) into (2.7), the mass of this black hole can be expressed

in terms of the radius of the event horizon as

M =
(D − 2)AD−2

16πG

(

r
(D−3)
h +

λ̄

2
r
(D−5)
h

)

(2.9)

The thermodynamical entities like Hawking temperature and semiclassical entropy for

the above black hole solution in arbitrary ‘D’-dimensions have been calculated in [8, 9],

given by

TH =
~(D − 3)

4πrh

[

r2
h + D−5

D−3
λ̄
2

r2
h + λ̄

]

(2.10)

– 5 –
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and

S =
AD−2r

(D−2)
h

4G~

(

1 +
D − 2

D − 4

λ̄

r2
h

)

(2.11)

respectively. Their derivation [8] follows the original arguments of Hawking based on

avoiding the conical singularity. One can see from (2.11) that these black holes do not

obey the Bekenstein-Hawking area law which states that entropy is one quarter of its

horizon area. The presence of the Gauss-Bonnet term to the standard Einstein-Hilbert

term modifies the area law upto an additive term which can itself be written as some

function of horizon area for any dimension D > 4. However in D = 4 the additional term

multiplied by λ̄ (see (2.11)) is only an additive constant given by 2πλ
G~

.

It is worthwhile to mention that the semiclassical result for black hole entropy for

Lovelock black holes has also been derived using Wald’s entropy formula [30], given by

S = −2π

∫

Σ

δL̃
δRabcd

ǫabǫcd, (2.12)

where the diffeomorphism-invariant Lagrangian (L̃) is constructed by using any combina-

tion of curvature invariants. Here ǫab is the binormal to the bifurcation (D-2) surface Σ

and the integral is taken with respect to the natural, induced volume element on Σ. It

is found that the semiclassical entropy contains an extra term other than A
4G~

. For the

Gauss-Bonnet black holes the semiclassical entropy has been calculated in [9] which also

shows a modification to the usual area law. The additional term is the Euler constant of

the cross section of the horizon. In four dimensions, this constant is fixed for all stationary

black holes since the horzon topology is S2 × R. For D > 4 the horizon topology is not

unique and this topological contribution to the entropy has more importance.

2.2 Topological Gauss-Bonnet AdS black holes

The action consisting of the Einstein-Hilbert plus the Gauss-Bonnet terms with a negative

cosmological constant Λ = −(D − 1)(D − 2)/2l2 in D dimensions, is given by

I =
1

16πG

∫

dDx
√−g

(

R + α(R2 + RαβµνRαβµν − 4RµνRµν) +
(D − 1)(D − 2)

l2

)

(2.13)

Considering this action Cai [10] found the AdS black hole solution in EGB theory. This is

given by the metric which is not necessarily spherically symmetric,

ds2 = −F (r)dt2 +
1

F (r)
dr2 + r2hijdxidxj , (2.14)

with

F (r) = k +
r2

2α̃

(

1 ∓
√

1 +
64πGα̃M

(D − 2)ΣkrD−1
− 4α̃

l2

)

(2.15)

where α̃ = α(D−3)(D−4). The possible values that k can take are 1, 0 and −1 for which the

(D − 2) dimensional metric in (2.13) yields spherical, plannar and hyperbolic symmetry

– 6 –
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respectively. Here Σk is the volume element of the (D − 2) dimensional hypersurface

parametrized by the angular variables in (2.14) and for the special case k = 1, i.e. for the

spherically symmetric case, it exactly matches with AD−2 in (2.9). The largest root of

F (r) = 0 defines the event horizon for this case and the mass of the black hole can be

written in terms of the horizon radius as

M =
(D − 2)Σkr

(D−3)
h

16πG

(

k +
α̃k2

r2
h

+
r2
h

l2

)

. (2.16)

In [10] the Hawking temperature was calculated by the requirement of the absence of

conical singularity at the horizon in the Euclidean sector of the black hole solution. The

result is,

T
(AdS)
H =

~[(D − 1)r4
h + (D − 3)kl2r2

h + (D − 5)α̃k2l2]

4πl2rh(r2
h + 2α̃k)

(2.17)

The semiclassical entropy was calculated by assuming that entropy of the black hole must

obey the first law of thermodynamics, leading to,

S(AdS) =
Σkr

(D−2)
h

4G~

(

1 +
(D − 2)

(D − 4)

2α̃k

r2
h

)

. (2.18)

The same expression for the semiclassical entropy was also found in [31] by using the

regularization of the Euclidean action in a background independent method.

Let us now compare the two kinds of black hole solutions mentioned in the last two

sections. Comparing the two actions (2.4) and (2.13) we see that for the parameter values

α = λ
2 , k = 1 and 1

l2
= 0, equation (2.13) exactly matches with (2.4). Therefore in this

limiting case there is no difference in the thermodynamical behaviors between these two

solutions. This is due Birkhoff’s theorem which is well applicable for these one parameter

spherically symmetric black hole solutions in Lovelock gravity [32].

2.3 Gauss-Bonnet dS black holes

If one includes a positive cosmological constant to the Einstein-Hilbert and Gauss-Bonnet

terms, given by Λ = (D − 1)(D − 2)/2l2, in arbitrary D dimensions, the action becomes

I =
1

16πG

∫

dDx
√−g

(

R + α(R2 + RαβµνRαβµν − 4RµνRµν) − (D − 1)(D − 2)

l2

)

.(2.19)

In [12] Cai and Guo discovered the spherically symmetric dS black hole solution corre-

sponding to this action, given by,

ds2 = −F̃ (r)dt2 +
dr2

F̃ (r)
+ r2dΩ2

(D−2), (2.20)

with

F̃ (r) = 1 +
r2

2α̃

(

1 ∓
√

1 +
64πGα̃M

(D − 2)AD−2rD−1
+

4α̃

l2

)

. (2.21)

– 7 –
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Here α̃ = α(D − 3)(D − 4) and M is an integration constant that matches with the AD

mass [33] of the solution.

The solution for M = 0 is given by the metric coefficient

F̃ (r) = 1 +
r2

2α̃

(

1 ∓
√

1 +
4α̃

l2

)

. (2.22)

Depending on the effective curvature radius 1
l2eff

= − 1
2α̃

(

1 ∓
√

1 + 4α̃
l2

)

, one has both

asymptotically dS and AdS cases for the massless solution (even if in the action only

the positive cosmological constant was considered). When l2eff is positive (negative), one

has asymptotically dS (AdS) solution. For α̃ > 0 the solution is asymptotically dS for the

branch with “−” sign in (2.22) and for “+” sign it is asymptotically AdS. On the other

hand for α̃ < 0 one has asymptotically dS solution for both branches subjected to the con-

dition α̃
l2

≥ −1/4. However, similar to the other two cases, here also the graviton is a ghost

on the background for the “+” branch of (2.21) and thus has less physical importance.

The branch with “−” sign, to be considered in this paper, is always asymptotically dS for

any sign of α̃ (however for the “−” sign, α̃
l2 ≥ −1/4 has to be satisfied).

For the massless Gauss-Bonnet dS black holes there is only one cosmological horizon

at rc = leff and as the mass (M) increases a black hole horizon (rh) arises while the cosmo-

logical horizon (rc) shrinks. The black hole horizon always remains inside the cosmological

horizon. For the black hole horizon the gravitational mass is given by the AD mass which

is always positive and for the cosmological horizon it is given by the BBM mass [34] which

is just negative of the AD mass. With these definitions, the first law of thermodynamics

is valid for both horizons when they are considered as different thermodynamical systems.

2.3.1 Thermodynamics of the black hole horizon

The position of the black hole horizon is given by the second largest root of F̃ (r = rh = 0).

The gravitational mass, represented by the AD mass, is given in terms of the black hole

horizon as

M =
(D − 2)AD−2r

D−3
h

16πG
(1 +

α̃

r2
h

− r2
h

l2
) (2.23)

The requirement of the absence of conical singularity at the black hole horizon in the

Euclidean sector of the above black hole gives the semiclassical Hawking temperature [12]

T
(dS)
H =

~[(D − 5)α̃l2 − (D − 1)r4
h + (D − 3)l2r2

h]

4πl2rh(r2
h + 2α̃)

(2.24)

whereas, the semiclassical entropy is given by

S(dS) =

∫

dM

T (dS)
=

AD−2r
(D−2)
h

4G~

(

1 +
(D − 2)

(D − 4)

2α̃

r2
h

)

. (2.25)

– 8 –
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2.3.2 Thermodynamics of the cosmological horizon

The temperature of the cosmological horizon, calculated by the same process as stated

earlier for the black hole horizon, is given by [12]

T (dS)
c =

~[−(D − 5)α̃l2 + (D − 1)r4
c − (D − 3)l2r2

c ]

4πl2rc(r2
c + 2α̃)

. (2.26)

There is an overall sign difference between this and temperature of the black hole horizon.

Since the total energy associated with the cosmological horizon (BBM energy) is just

negative of AD energy as given in (2.23), the first law dM = TdS is well applicable here.

The semiclassical entropy associated with the cosmological horizon is now given by

S(dS)
c =

AD−2r
(D−2)
c

4G~

(

1 +
(D − 2)

(D − 4)

2α̃

r2
c

)

. (2.27)

3 Tunneling mechanism and blackbody spectrum

Tunneling mechanism is widely used to study Hawking radiation. However the different

variants [25, 26] of the tunneling mechanism only yield the temperature and not the spec-

trum. This was highlighted in a recent work involving one of us [23]. There it was shown for

the first time that the tunneling formalism also provides the perfect blackbody spectrum

of the radiation with the temperature given by the Hawking temperature of a black hole.

Later this method was used successfully for other non-spherically symmetric spacetimes

in Einstein gravity [36]. But these works were strictly confined to the Einstein gravity

only. Now we shall generalize the method to find the blackbody spectrum and Hawking

temperature for the Lovelock black holes which were introduced in the last section. This

will make the tunneling method more reliable in the context of Lovelock gravity.

Let us first consider a spherically symmetric, static spacetime represented by the metric

ds2 = −g(r)dt2 +
1

g(r)
dr2 + r2dΩ2

D−2 (3.1)

The positions of the horizons can be found by solving g(r = rh) = 0. For the asymptotically

flat and AdS black holes there is only one event horizon given by the largest root of this

equation. For the dS case the largest root gives the position of cosmic horizon and the

second largest root is the black hole event horizon.

We start our analysis by considering the massless scalar particle governed by the Klein-

Gordon equation with the spacetime metric given by (3.1),

− ~
2

√−g
∂µ[gµν√−g∂ν ]Φ = 0. (3.2)

Since in our analysis we shall be dealing with the radial trajectory it is enough to consider

the r − t sector of the metric (3.1) to solve (3.2). This equation cannot be solved exactly,

therefore we choose the standard (WKB) ansatz for Φ as

Φ(r, t) = exp[− i

~
S(r.t)], (3.3)
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where the action is expanded in powers of ~;

S(r, t) = S0(r, t) +

∞
∑

i=1

~
iSi(r, t). (3.4)

Now plugging (3.3) into (3.2) we get

i

g(r)

(∂S
∂t

)2
− ig(r)

(∂S
∂r

)2
− ~

g(r)

∂2S
∂t2

+ ~g(r)
∂2S
∂r2

+~
∂g(r)

∂r

∂S
∂r

= 0. (3.5)

Taking the semiclassical limit (~ → 0), we obtain the first order partial differential equation,

∂S0

∂t
= ±g(r)

∂S0

∂r
. (3.6)

This is nothing but the semiclassical Hamilton-Jacobi equation. We choose the semiclassical

action for a scalar field moving under the background metric (3.1) in the same spirit as

usually done in the semiclassical Hamilton-Jacobi theory. Looking at the time translational

symmetry of the spacetime (3.1) we take the form of the semiclassical action as

S0(r, t) = Ωt + S0(r), (3.7)

where Ω is the conserved quantity corresponding to the time translational Killing vector

field. It is identified as the effective energy experienced by the particle. Now substituting

this in (3.6) one can easily find

S0(r) = ±Ω

∫

dr

g(r)
, (3.8)

Using (3.8) in (3.7) we finally find the semiclassical action as

S0(r, t) = Ω

(

t ±
∫

dr

g(r)

)

. (3.9)

Now we have the solution for the scalar field (3.3),

Φ(r, t) = e
[− i

~
Ω(t±

R

dr
g(r)

)]

= e−
i
~
Ω(t±r∗) (3.10)

expressed in terms of the tortoise coordinate r∗ =
∫

dr
g(r) . We shall require this solution in

our analysis to find the radiation spectrum for Lovelock black holes.

3.1 Blackbody spectrum for the black hole (event) horizon

The first step in the analysis is to find a coordinate system which is regular at the event

horizon. We do not need to know the global behaviour of the spacetime. If we can find a

coordinate system in which the metric (3.1) is defined both inside and outside the event

horizon the purpose is solved. In such a coordinate system we can readily connect the
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right and left moving modes defined inside and outside the event horizon.2 In appendix A

a Kruskal-like extension of (3.1) is done by concentrating on the behavior at the black hole

event horizon only. Earlier, a similar formulation in the context of Lovelock black holes

was done in [6]. In appendix C we show how to identify the left and right moving modes

inside and outside the event horizon.

First, it can be noted that the set of coordinate transformations, given in (A.11)

and (A.17) are connected by the following transformations in (t, r∗) coordinate

tin = tobs −
iπ

2κ

r∗in = r∗obs +
iπ

2κ
(3.11)

In the null coordinates (u, v) (A.5), (A.13)these two relations are recast as

uin = uobs −
iπ

κ
vin = vobs. (3.12)

Following [23], we consider a situation where n number of non-interacting virtual pairs are

created inside the black hole horizon. The left and right moving modes inside the black

hole horizon, found in (3.10), are then given by (C.3) and (C.4) respectively. Here the

null coordinates are defined in (A.13) with r∗ given by (A.12). Likewise the left and right

moving modes outside the event horizon are given by (C.1) and (C.2) respectively. Now it

is easy to see that due to the transformation (3.12) the inside and the outside modes are

connected by,

Φ
(R)
in = e−

πΩ
~κ Φ

(R)
obs

Φ
(L)
in = Φ

(L)
obs (3.13)

Any physical state corresponding to n number of virtual pairs inside the black hole

event horizon, when observed by an observer outside the horizon, is given by,

|Ψ〉 = N
∑

n

|n(L)
in 〉 ⊗ |n(R)

in 〉 = N
∑

n

e−
πnΩ
~κ |n(L)

obs〉 ⊗ |n(R)
obs〉, (3.14)

where N is a normalisation constant. Here we have used the transformations (3.13). Now

using the normalization condition 〈Ψ|Ψ〉 = 1 and considering n = 0, 1, 2 . . . for bosons or

n = 0, 1 for fermions, one obtains

N(boson) =
(

1 − e−
2πΩ
~κ

)
1
2

(3.15)

N(fermion) =
(

1 + e−
2πΩ
~κ

)− 1
2

(3.16)

2We use the subscript “in” for modes inside the event horizon. Since the observer stays outside the

event horizon we use the subscript “obs” for modes outside the event horizon.
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Therefore the physical states for them, viewed by an external observer, are given by

|Ψ〉(boson) =
(

1 − e−
2πΩ
~κ

)
1
2
∑

n

e−
πnΩ
~κ |n(L)

obs〉 ⊗ |n(R)
obs 〉 (3.17)

|Ψ〉(fermion) =
(

1 + e−
2πΩ
~κ

)− 1
2
∑

n

e−
πnΩ
~κ |n(L)

obs〉 ⊗ |n(R)
obs〉. (3.18)

The density matrix operator for the bosons can be constructed as

ρ̂(boson) = |Ψ〉(boson)〈Ψ|(boson)

=
(

1 − e−
2πΩ
~κ

)

∑

n,m

e−
π(n+m)Ω

~κ |n(L)
obs〉 ⊗ |n(R)

obs 〉〈m
(R)
obs | ⊗ 〈m(L)

obs| (3.19)

Since the left going modes inside the horizon do not reach the outer observer we can take

the trace over all such ingoing modes. This gives the reduced density operator for the right

moving modes as

ρ̂
(R)
(boson) =

(

1 − e−
2πΩ
~κ

)

∑

n

e−
2πnΩ

~κ |n(R)
obs〉〈n

(R)
obs | (3.20)

The average number of particles detected at asymptotic infinity, given by the expectation

value of the number operator n̂, is now given by

〈n〉(boson) = trace(n̂ρ̂
(R)
(boson))

=
1

e
2πΩ
~κ − 1

, (3.21)

which is nothing but the Bose-Einstein distribution of particles corresponding to the Hawk-

ing temperature

TH =
~κ

2π
=

~g′(rh)

4π
. (3.22)

The same methodology, when applied on fermions, gives the Fermi-Dirac distribution with

the correct Hawking temperature. In the context of Lovelock black holes with distinct

asymptotic behavior, we now substitute g(r) by the appropriate metric coefficients to

reproduce the known semiclassical Hawking temperature for each spacetime.

Now it may be worthwhile to mention that one could have chosen the set of trans-

formations (3.11) with opposite relative sign between two terms at the right hand side,

so that,

tin = tobs +
iπ

2κ

r∗in = r∗obs −
iπ

2κ
. (3.23)

For this choice also the inside and outside coordinates (A.11), (A.17) are connected. How-

ever this is an unphysical solution [37]. To see this note that, use of (3.23), gives

ΦL
in = ΦL

obs

ΦR
in = e

πΩ
~κ ΦR

obs. (3.24)
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Therefore the probabilities, that the ingoing (left-moving) modes can go inside the event

horizon (PR) and the outgoing (right-moving) modes can go outside the event horizon, as

observed from outside, are given by

PL = |ΦL
in|2 = |ΦL

obs| = 1

PR = |ΦR
in|2 = e

2πΩ
~κ |ΦR

obs|2 = e
2πΩ
~κ . (3.25)

In the classical limit (~ → 0), there is absolutely no chance that any mode can cross the

event horizon from inside, therefore one must have PR = 0. But we can see from (3.25)

that it is diverging and therefore the choice (3.23) is unphysical. It may be worthwhile to

mention that, interestingly, for the cosmological horizon a choice similar to (3.23) will be

physical whereas the other choice similar to (3.11) is unphysical.

3.2 Blackbody spectrum for the cosmological horizon

To find the radiation spectrum for the cosmological horizon we first need to perform two

tasks. One is the Kruskal-like extension of the space-time (3.1) just around the cosmological

horizon which is done in appendix B. The other requirement is to identify the left and

right moving modes outside and inside the cosmological horizon which is discussed in

appendix C.3

From the Kruskal-like extension it is found that the inside (Tobs,Xobs) and outside

(Tout,Xout) coordinates, defined in (B.7) and (B.8) respectively, can be connected with

each other by the following relations4

tout = tobs +
iπ

2κ

r∗out = r∗obs −
iπ

2κ
. (3.26)

The left and right moving modes inside the cosmological horizon (outside the event horizon)

are given by (C.5) and (C.6) respectively, whereas, (C.7) and (C.8) give left and right

moving modes outside the cosmological horizon respectively. Using (3.26) the modes inside

and outside the cosmological horizon can be connected as

Φ
(R)
out = Φ

(R)
obs

Φ
(L)
out = e

πΩ
~κ Φ

(L)
obs (3.27)

The physical state representing n number of non-interacting pairs, created outside the

cosmological horizon, when viewed from inside the horizon, is given by

|Ψ〉 = N
∑

n

|n(R)
out〉 ⊗ |n(L)

out〉 = N
∑

n

e
πnΩ
~κ |n(R)

obs〉 ⊗ |n(L)
obs〉. (3.28)

3We use the subscript “obs” for modes inside the cosmological horizon, such that rh < r < rc, since an

observer can stay only in this region. The subscript “out” is used for modes outside the cosmological horizon.
4One can again choose the opposite relative signs between the quantities at the right hand side of (3.26).

With this choice the probability for a right-moving mode to cross the cosmological horizon from inside is

P
R = 1. The probability for the left-moving mode to cross the cosmological horizon from the outside,

observed from inside the horizon, is then given by P
L = e

−2πΩ

~κ . Since, for the cosmological horizon, Ω is

the BBM energy which is negative [34], P
L diverges in the classical limit (~ → 0). Therefore (3.26) is the

only physical choice for this case.
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Here the normalization constant N can be found from 〈Ψ|Ψ〉 = 1 and the physical state

for bosons and fermions, turns out to be,

|Ψ〉(boson) =
(

1 − e
2πΩ
~κ

)
1
2
∑

n

e
πnΩ
~κ |n(R)

obs〉 ⊗ |n(L)
obs〉, (3.29)

|Ψ〉(fermion) =
(

1 + e
2πΩ
~κ

)− 1
2
∑

n

e
πnΩ
~κ |n(R)

obs 〉 ⊗ |n(L)
obs〉 (3.30)

respectively. The density operator for the bosons is now constructed as

ρ̂(boson) = |Ψ〉(boson)〈Ψ|(boson)

=
(

1 − e
2πΩ
~κ

)

∑

n,m

e
π(n+m)Ω

~κ |n(R)
obs 〉 ⊗ |n(L)

obs〉〈m
(R)
obs | ⊗ 〈m(L)

obs|. (3.31)

Since in this case right-moving modes are going outside the cosmological horizon, these

are completely lost. We take the the trace over all such right-moving modes to find the

reduced density operator for the left-moving modes, given by

ρ̂
(L)
(boson) =

(

1 − e
2πΩ
~κ

)

∑

n

e
2πnΩ

~κ |n(L)
obs〉〈n

(L)
obs|. (3.32)

In the case of cosmological horizon the particles are not observed at asymptotic infinity,

rather in a region in between the event and the cosmological horizon. The average number

of particles which is detected by an observer in this region is now given by,

〈n〉(boson) = trace
(

n̂ρ̂
(L)
(boson)

)

=
1

e−
2πΩ
~κ − 1

. (3.33)

This is again a Bose-Einstein distribution of particles corresponding to the new Hawk-

ing temperature

Tc = −~κ

2π
= −~g′(rc)

4π
. (3.34)

Note that the temperature has the same value (3.22) as found for the black hole (event)

horizon but is negative. This negative temperature together with the negative BBM en-

ergy [34] of the dS spacetime make the first law of thermodynamics valid for the cosmo-

logical horizon.

4 Blackbody spectrum and corrected Hawking temperature

We now develop a general framework to find the corrections to the semiclassical Hawking

radiation for a general class of metric (3.1), where the r−t sector of the metric is decoupled

from the angular parts. In our previous work [4] we generalized the tunneling method to

find the corrections to the Hawking temperature for the black hole solution of Einstein-

Maxwell theory (Kerr-Newman) in (3+1) dimensions by using the method of complex path.
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Now we shall use the modified method [23], as outlined in the previous section, where one

can find the radiation spectrum. We now generalize the approach presented in section 3,

by going beyond the semiclassical approximation, to find the modified radiation spectrum.

Our analysis shows that the higher order terms in the WKB ansatz, when included in

the theory, do not affect the thermal nature of the spectrum. Grey-body factors do not

appear in the radiation spectrum, rather the temperature of the radiation undergoes some

quantum corrections, with a perfect blackbody spectrum.

In the beginning of section 3 we only considered the semiclassical action (S0) corre-

sponding to the scalar field ansatz (3.3) and found a solution for that in (3.10). Now we

want to follow the approach developed in [19] to include all the higher order terms in ~

in the analysis. Putting (3.3) in (3.2) and equating the coefficients of different orders in

~ to zero one finds a set of partial differential equations [19]. Each differential equation

corresponding to any specific power of ~ can be simplified by the equation coming in one

lower order in ~. This finally yields [4, 19–21, 27, 35] the set of partial differential equations

for different powers of ~,

~
0 :

∂S0

∂t
= ±g(r)

∂S0

∂r
, (4.1)

~
1 :

∂S1

∂t
= ±g(r)

∂S1

∂r
,

~
2 :

∂S2

∂t
= ±g(r)

∂S2

∂r
,

.

.

.

and so on. Therefore the n-th order solution of (3.5) is given by,

∂Sn

∂t
= ±g(r)

∂Sn

∂r
, (4.2)

where (n = 0, i; i = 1, 2, . . .).

Because of this identical set of differential equations, the solutions for other Si(r, t)’s,

subjected to a similar functional choice like (3.7), can differ only by a proportionality factor

from (3.9). Therefore the most general form of S(r, t) can be written as

S(r, t) =

(

1 +
∞
∑

i=1

γi~
i

)

S0(r, t), (4.3)

where γi’s are proportionality constants having dimensions of [~]−i.

We carry out the following dimensional analysis to express these γi’s in terms of di-

mensionless constants. The fact that the units of the product of Newton’s constant and

mass density are same in all dimensions [39] yields

[G]
M

L3
= [G(D)]

M

LD−1
, (4.4)
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where G is the Newton’s constant in four dimensions, given by

[G] =
[c]3L2

[~]
. (4.5)

Putting this in (4.4) and replacing L by D-dimensional Planck length (l
(D)
P ) we get

(

l
(D)
P

)(D−2)
=

[~]G(D)

[c]3
. (4.6)

In units of G(D) = c = 1, one finds [~] =
(

l
(D)
P

)(D−2)
. The only black hole parameter having

the unit of length is the horizon radius (rh or rc). Therefore we can write [~] ∼ r
(D−2)
h or

[~] ∼ r
(D−2)
c for the black hole (event) horizon and the cosmological horizon respectively.

Now (4.3) can be written as (for the tunneling through the black hole horizon)

S(r, t) =

(

1 +

∞
∑

i=1

βi~
i

r
i(D−2)
h

)

S0(r, t)

=

(

1 +
∞
∑

i=1

βi~
i

r
i(D−2)
h

)

(

Ωt ± Ω

∫

dr

g(r)

)

, (4.7)

where βi’s are dimensionless constants. Finally the cherished solution for the scalar field

in presence of the higher order corrections to the semiclassical action, follows from (3.3)

and (4.7),

Φ = exp

[

− i

~
Ω

(

1 +

∞
∑

i=1

βi~
i

r
i(D−2)
h

)

(t ± r∗)

]

. (4.8)

The left and right moving modes inside and outside the black hole event horizon,

following the convention of appendix C, now becomes

Φ
(R)
in = e

− i
~
Ω

0

B

@
1+

∞
∑

i=1

βi~
i

r
i(D−2)
h

1

C

A
uin

; Φ
(L)
in = e

− i
~
Ω

0

B

@
1+

∞
∑

i=1

βi~
i

r
i(D−2)
h

1

C

A
vin

,

Φ
(R)
out = e

− i
~
Ω

0

B

@
1+

∞
∑

i=1

βi~
i

r
i(D−2)
h

1

C

A
uout

; Φ
(L)
out = e

− i
~
Ω

0

B

@
1+

∞
∑

i=1

βi~
i

r
i(D−2)
h

1

C

A
vout

. (4.9)

These inside and outside modes, moving in a particular direction (right or left), can also

be connected by the set of transformations (3.11) or (3.12). This yields

Φ
(R)
in = e

−πΩ
~κ

0

B

@
1+

∞
∑

i=1

βi~
i

r
i(D−2)
h

1

C

A

Φ
(R)
out

= e−
πΩ
~κ′ Φ

(R)
out

Φ
(L)
in = Φ

(L)
out, (4.10)
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where we have substituted

κ′ =

(

1 +

∞
∑

i=1

βi~
i

r
i(D−2)
h

)−1

κ. (4.11)

This can be considered as the modified surface gravity in presence of higher ~ order cor-

rections to the WKB ansatz.

The physical state representing n number of virtual pairs inside the horizon, when

observed from the outside, is now given by

|Ψ〉 = N
∑

n

|n(L)
in 〉 ⊗ |n(R)

in 〉 = N
∑

n

e−
πnΩ
~κ′ |n(L)

out〉 ⊗ |n(R)
out〉. (4.12)

Now from here on, it is trivial to check that the whole methodology developed for the

semiclassical case can be repeated to find the new radiation spectrum. The only difference

is the redefinition of the surface gravity (κ) by κ′. The final result for the radiation

spectrum, for bosons, is now given by

〈n〉(boson) =
1

e
2πΩ
~κ′ − 1

. (4.13)

Now one can see that the spectrum is still given by the blackbody spectrum with the new

corrected Hawking temperature

Tbh =
~κ′

2π
=

~κ

2π

(

1 +

∞
∑

i=1

βi~
i

r
i(D−2)
h

)−1

=

(

1 +

∞
∑

i=1

βi~
i

r
i(D−2)
h

)−1

TH, (4.14)

where TH is the usual semiclassical Hawking temperature, given by (3.22). Note that (4.14)

gives the corrected Hawking temperature for any general static, chargeless black hole so-

lutions in EGB theory with an appropriate choice of metric.

For the cosmological horizon, in presence of other higher order terms in ~ in the action,

the relation between right and left moving modes at two sides are given by

Φ
(R)
out = Φ

(R)
obs

Φ
(L)
out = e

πΩ
~κ′ Φ

(L)
obs , (4.15)

where κ′ is defined in (4.11). Subsequently the new radiation spectrum for the bosons turns

out to be same as (3.21) with κ′ replacing κ. Therefore the modified Hawking temperature

for the cosmological horizon, given by replacing rh by rc, is

Tch = −~κ′

2π
=

~κ

2π

(

1 +

∞
∑

i=1

βi~
i

r
i(D−2)
c

)−1

=

(

1 +

∞
∑

i=1

βi~
i

r
i(D−2)
c

)−1

Tc, (4.16)

where Tc is the semiclassical temperature given by (3.34).

The coefficients βi s’ occurring in either (4.14) or (4.16) are related to the trace

anomaly. This will be discussed in section 6.
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4.1 Spherically symmetric, asymptotically flat black holes

For these black holes g(rh) = f(rh), where f(r) is given by (2.6). Therefore from (4.14), the

corrected Hawking temperature for the spherically symmetric, asymptotically flat Lovelock

black holes is given by

Tbh =
~(D − 3)

4πrh

(

1 +
∑

i

βi
~

i

r
i(D−2)
h

)−1
[

r2
h + D−5

D−3
λ̄
2

r2
h + λ̄

]

. (4.17)

The semiclassical Hawking temperature is given by the leading contribution,

TH =
~f ′(rh)

4π
=

~(D − 3)

4πrh

[

r2
h + D−5

D−3
λ̄
2

r2
h + λ̄

]

, (4.18)

This is in agreement with (2.10), present in the existing literature [8], found by follow-

ing Hawking’s original derivation to avoid the conical singularity at the black hole event

horizon.

4.2 Topological Gauss-Bonnet AdS black holes

One can calculate the modified Hawking temperature for the AdS black hole of section 2.2

just by replacing g(rh) = F (rh) from (2.15). This would lead to the result, with rh now

representing the event horizon radius for AdS black holes, for the black hole temperature,

T
(AdS)
bh =

(

1 +
∑

i

βi
~

i

r
i(D−2)
h

)−1
~[(D − 1)r4

h + D − 3)kl2r2 + (D − 5)α̃k2l2]

4πl2rh(r2
h + 2α̃k)

. (4.19)

Here also at the lowest order in ~, we get the known value of the semiclassical Hawking

temperature (2.17).

4.3 Gauss-Bonnet dS black holes

For the dS black holes in section 2.3 the issue of Hawking radiation is quite subtle because

there is no notion of spatial infinity as spacetime is bounded by a cosmological horizon.

In a work [38] Gomberoff and Teitelboim argued that in the absence of spatial infinity

one can take either the black hole horizon or the cosmological horizon as the boundary to

study the thermodynamics of the other horizon. The black hole horizon is always inside the

cosmological horizon. It is known that both the horizons are involved in Hawking radiation

and the observer is somewhere in between the two horizons. The Hawking temperature

associated with these two horizons are not equal. As a result there is no equilibrium between

them, if they are treated as two different systems. Ideally any observer in between the two

horizons will get the radiation coming from both the horizons. Unlike the black hole event

horizon, the pair creation occurs just outside of the cosmic horizon. The outgoing mode

goes away from the cosmic horizon and the other one tunnels inwards to reach the observer.
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The corrected Hawking temperature associated with the black hole horizon, found by

using g(rh) = F̃ (rh), is given by

T
(dS)
bh = T

(dS)
H

(

1 +
∑

i

βi
~

i

r
i(D−2)
h

)−1

, (4.20)

where the semiclassical Hawking temperature (T
(dS)
H ) agrees with (2.24).

For the cosmological horizon it is given by (4.16) and substituting g(rc) = F̃ (rc) we find

T
(dS)
ch = Tc

(

1 +
∑

i

βi
~

i

r
i(D−2)
c

)−1

, (4.21)

where the semiclassical value Tc exactly matches with T dS
c in (2.26).

5 Entropy correction

The fact that the higher order corrections to the WKB ansatz yields quantum corrections

to the black hole temperature enable us to find the entropy corresponding to that modified

temperature. While doing so we shall use the basic assumption that the Lovelock black

holes satisfy the first law of thermodynamics dM = TdS. Then one can find the corrected

entropy of Lovelock black holes corresponding to the corresponding corrected Hawking

temperature as

Sbh =

∫

dM

Tbh
=

∫

1

Tbh

(

∂M

∂rh

)

drh. (5.1)

The same method will work for the cosmological horizon (for the Gauss-Bonnet dS black

holes), where we shall use the modified Hawking temperature of cosmological horizon.

It may be mentioned that, following this thermodynamical approach, the semiclassical

entropy was computed in [10] and [12]. Although it is possible to find the correctional terms

for all orders, here we shall concentrate only up-to leading and sub-leading contributions.

5.1 Spherically symmetric, asymptotically flat black holes

The gravitational mass and corrected Hawking temperature, expressed in terms of the hori-

zon radius, are given by (2.9) and (4.17) respectively. Using these in (5.1) and integrating

up-to second order in ~, we get

Sflat
bh =

AD−2r
(D−2)
h

4G~

(

1 +
D − 2

D − 4

λ̄

r2
h

)

+
β1AD−2

4G

(

log

(

rD−2
h

G~

)

− λ̄(D − 2)

2r2
h

)

−β2~AD−2

4G

(

1

r
(D−2)
h

+

(

1 − 2

D

)

λ̄

rD
h

)

+ O(~2). (5.2)

The first term in this expression is the familiar semiclassical entropy for the spherically

symmetric black hole solutions in Lovelock gravity [8] and other terms are coming as
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quantum corrections. The semiclassical result for black hole entropy is not just one-quarter

of its horizon area. Because of the presence of the Gauss-Bonnet term it is modified upto

an additive term which also can be written as a function of horizon area. From (5.2) it

is clear that the leading order correction to the semiclassical value is not pure logarithmic

and also the next to leading correction is not inverse of the horizon area. This is in contrast

to Einstein’s gravity where for the Schwarzschild solution, one has purely logarithmic and

inverse horizon area terms as the leading and next to leading order corrections, respectively.

The presence of Gauss-Bonnet term, therefore, modifies the results in a nontrivial manner.

From (5.2) it follows that in the limit λ = 0 (i.e. without the Gauss-Bonnet term)

we get

Sbh(λ = 0) = SBH +
β1(D − 2)AD−2

4G
log SBH − β2

(

AD−2

4G

)2 1

SBH
+ O(~2). (5.3)

This is the corrected entropy for the Schwarzschild solution in Einstein gravity in arbitrary

D- dimensions and here one has logarithmic and inverse area terms as leading and sublead-

ing corrections. In particular, for D = 4, (5.3) reproduces the result of corrected entropy

for the Schwarzschild black hole, found in tunneling [4, 19] or path integral [40] approaches,

where the coefficient of the logarithmic term is given by 1
90 (in c = G = κB = 1 unit).

5.2 Topological Gauss-Bonnet AdS black holes

The corrected entropy for these black holes can be calculated by integrating the first law

of thermodynamics (5.1) with the modified temperature (4.19) and black hole mass (2.16),

which yields

SAdS
bh =

Σkr
(D−2)
h

4G~

(

1 +
D − 2

D − 4

2α̃k

r2
h

)

+
β1Σk

4G

(

log

(

rD−2
h

G~

)

− (D − 2)α̃k

r2
h

)

−β2~Σk

4G

(

1

r
(D−2)
h

+

(

1 − 2

D

)

2α̃k

rD
h

)

+ O(~2). (5.4)

Now it is interesting to see that for k = 0 the functional form of corrected entropy (5.4)

is identical to the result found for Einstein gravity (5.3), although the two cases differ

drastically. For k = 0 one has a zero curvature hypersurface representing an event horizon

and for the second case one does not have the Gauss-Bonnet term in the theory. Previously,

this particular phenomena was known for the semiclassical case only, but here we can see

the same is true also for the corrected form of entropy.

5.3 Gauss-Bonnet dS black holes

For the dS black holes we have to find the correctional terms to the semiclassical entropy

separately for the black hole (event) horizon and the cosmological horizon.

5.3.1 Black hole horizon

Using the gravitational mass or the AD mass of the black hole from (2.23), the modified

Hawking temperature from (4.20) and integrating the first law of thermodynamics (5.1)
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we get

SdS
bh =

AD−2r
(D−2)
h

4G~

(

1 +
D − 2

D − 4

2α̃

r2
h

)

+
β1AD−2

4G

(

log

(

rD−2
h

G~

)

− (D − 2)α̃

r2
h

)

−β2~AD−2

4G

(

1

r
(D−2)
h

+

(

1 − 2

D

)

2α̃

rD
h

)

+ O(~2). (5.5)

5.3.2 Cosmological horizon

The gravitational mass corresponding to the cosmological horizon, given by the BBM pre-

scription [34], is just negative of the AD mass (2.23) with rc replacing rh. Now using (4.21)

in (5.1) (with Tch replacing Tbh), one can calculate the corrected entropy associated with

the cosmological horizon,

SdS
ch =

AD−2r
(D−2)
c

4G~

(

1 +
D − 2

D − 4

2α̃

r2
c

)

+
β1AD−2

4G

(

log

(

rD−2
c

G~

)

− (D − 2)α̃

r2
c

)

−β2~AD−2

4G

(

1

r
(D−2)
c

+

(

1 − 2

D

)

2α̃

rD
c

)

+ O(~2). (5.6)

6 Trace anomaly and coefficient of the leading correction

In this section we relate the coefficient (β1) of the leading correction to entropy for various

cases (5.2), (5.4), (5.5) and (5.6) with the trace anomaly of the stress tensor for the scalar

field, moving in a background of ‘D’ dimensional curved spacetime. For that we use the

method of complex path proposed in [26] and which has been used earlier for the same

purpose in [4, 21]. In this method particle creation occurs just inside the black hole horizon

(just outside the cosmological horizon(CH)). One mode is attracted towards the center of a

black hole and the outgoing mode tunnels through the black hole (event) horizon, traversing

a complex path which is forbidden classically (for CH the outgoing mode goes away while

the ingoing mode tunnels inside). In our convention the + (−) sign in (4.7) or (4.8) implies

that the particle is ingoing (outgoing). The expression for the ingoing and outgoing scalar

field modes, following from (4.8), are then given by

Φin = exp

[

− i

~
Ω

(

1 +
∑

i

βi~
i

r
i(D−2)
h

)

(

t +

∫

C

dr

g(r)

)

]

Φout = exp

[

− i

~
Ω

(

1 +
∑

i

βi~
i

r
i(D−2)
h

)

(

t −
∫

C

dr

g(r)

)

]

(6.1)

For the black hole event horizon the contour is chosen such that it starts just behind the

event horizon left to right along a semicircle, in the lower half of the complex plane, just

avoiding the singularity at the (event) horizon. The ingoing and outgoing probabilities for
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the respective modes in the case of black hole (event) horizon are given by

Pin = exp

[

2

~

(

1 +
∑

i

βi
~

i

r
i(D−2)
h

)(

ΩIm t + ΩIm

∫

C

dr

g(r)

)]

Pout = exp

[

2

~

(

1 +
∑

i

βi
~

i

r
i(D−2)
h

)(

ΩIm t − ΩIm

∫

C

dr

g(r)

)]

. (6.2)

Since classically the ingoing probability Pin = 1, one has

Im t = −Im

∫

C

dr

g(r)
(6.3)

for the black hole horizon.

Now let us make an infinitesimal scale transformation to the metric coefficient of

the Lovelock spcetime as ḡtt(r) = kgtt(r) ≃ (1 + δk)gtt(r) and ḡrr(r) = k−1grr(r) ≃
(1 + δk)−1grr(r). The invariance of the Klein-Gordon equation under this transformation

enforces the field (Φ) to transform as Φ̄ = k−1Φ. Now consider the action for the massive

scalar field in arbitrary ‘D’ dimensions, given by

S =
1

2

∫ √−g(∇µΦ∇µΦ − m2Φ2)dDx, (6.4)

where m is the mass of the scalar field.5 From this one finds that the dimension of Φ is

given by,

[Φ] ∼ [M ](D−2)/2 ∼ 1

[L](D−2)/2
. (6.5)

Comparing the scalar particle action from (3.4) and (4.7) one has

ImSout
1 (r, t) =

β1

r
(D−2)
h

ImSout
0 (r, t). (6.6)

Now concentrating on the tunneling from the black hole (event) horizon and us-

ing (3.7), (3.8) and (6.3), we get

ImSout
0 (r, t) = −2ΩIm

∫

C

dr

g(r)
(6.7)

Under scale transformation the scalar field transforms as Φ̄ = k−1Φ. Therefore

from (6.5) it follows that the mass and length scales should be changed as M̄ =

k−2/(D−2)M ≃ (1 − 2
D−2δk)M and (1/L̄) = k−2/(D−2)(1/L) ≃ (1 − 2

D−2δk)(1/L) respec-

tively. The same is true for the gravitational energy (Ω) and horizon radius (rh or rc)

of the Lovelock spacetime in arbitrary ‘D’ dimensions. From these we can calculate the

transformed form of (6.6). This is found to be,

ImS̄out
1 (r, t) =

β1

r̄
(D−2)
h

ImS̄out
0 (r, t) ≃ β1

rh
(D−2)

(

1 − 4

D − 2
δk

)

ImSout
0 (r, t). (6.8)

5We keep m here only for the dimensional analysis, otherwise it is always zero in our analysis which

considers the tunneling of massless scalar fields.
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which leads to

δImS̄out
1 (r, t)

δk
=

ImSout
1 (r, t) − ImS̄out

1 (r, t)

δk

= − 8Ωβ1

(D − 2)rh
(D−2)

Im

∫

C

dr

g(r)
. (6.9)

Considering the scalar field action (6.4) it can be shown that under a constant scale trans-

formation ḡµν , the action is not invariant in the presence of trace anomaly, since

δImS
δk

=
1

2
Im

∫

d4x
√
−g(〈T µ

µ〉(1) + 〈T µ
µ〉(2) + . . .), (6.10)

where 〈T µ
µ〉(i)’ s are the trace of the regularized stress energy tensor calculated for i-th

loop. Considering one loop only and comparing (6.9) and (6.10) we find the coefficient of

the leading correction to the semiclassical entropy as

β1 = −
(

Im

∫

C

dr

g(r)

)−1 (D − 2)r
(D−2)
h

16Ω
Im

∫

dDx
√−g〈T µ

µ〉(1)

= −(D − 2)r
(D−2)
h g′(rh)

16πΩ
Im

∫

dDx
√
−g〈T µ

µ〉(1). (6.11)

Note that this is the undetermined coefficient (β1) that occurs in the expressions of the

corrected entropy (5.2), (5.4) and (5.5).

For Gauss-Bonnet dS black holes we have found the expression of the corrected entropy

associated with the cosmological horizon (5.6). We can follow a strategy, similar to the

previous one, to relate β1 appearing in (5.6), with the trace anomaly. For that first note

that in the case of cosmological horizon the ingoing mode can always cross the cosmological

horizon to reach the observer. Therefore, unlike the black hole horizon, here one has Pin = 1

in the classical limit and from (6.2) it follows that

Im t = Im

∫

C

dr

g(r)
(6.12)

and consequently

ImS in
0 (r, t) = 2ΩIm

∫

C

dr

g(r)
. (6.13)

Now using the infinitesimal scale transformation to the metric coefficients and following

the earlier methodology one would find β1 appearing in (5.6) as

β1|ch =

(

Im

∫

C

dr

g(r)

)−1 (D − 2)r
(D−2)
c

16Ω
Im

∫

dDx
√−g〈T µ

µ〉(1)

= −(D − 2)r
(D−2)
c g′(rc)

16πΩ
Im

∫

dDx
√−g〈T µ

µ〉(1) (6.14)

Here the contour is chosen as a semicircle in the lower region of the complex plane, going

from right to left, starting from just outside the cosmological horizon to the inner region

avoiding the singularity at the cosmological horizon.
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It is evident from (6.11) and (6.14) that the explicit calculation of β1, therefore, needs

prior knowledge of the trace anomaly in ‘D’ dimensions. In the following we shall take

specific metrics to give a simplified expression for β1. However, since there is no known

result of trace anomaly for any dimension D > 4 we shall not be able to give an explicit

value for β1.

6.1 Spherically symmetric, asymptotically flat black holes

We can simplify β1 in (6.11) by using g(r) = f(r) from (2.6), (2.7), (2.9) to give the

corrected entropy (5.2). Also since Ω in (3.7) is the conserved quantity corresponding to

the time translation Killing vector field, it is nothing but the total gravitational energy or

equivalently the mass of the black hole, given by (2.9). Using these we get

βflat
1 = −2G[(D − 3)r2

h + λ̄
2 (D − 5)]r2

h

(r2
h + λ̄)(2r2

h + λ̄)AD−2
Im

∫

dDx
√−g〈T µ

µ〉(1). (6.15)

The expression of trace anomaly in the background of a curved spacetime is not known for

dimensions greater than four. Therefore we cannot integrate this expression in general to

find β1. Now the corrected entropy of the spherically symmetric asymptotically flat black

holes can be found from (5.2) and (6.15) as

Sflat
bh =

AD−2r
(D−2)
h

4G~

(

1 +
D − 2

D − 4

λ̄

r2
h

)

− [(D − 3)r2
h + λ̄

2 (D − 5)]r2
h

2(r2
h + λ̄)(2r2

h + λ̄)
×

×
(
∫

dDx
√−g〈T µ

µ〉(1)
)

(

log

(

rD−2
h

G~

)

− (D − 2)λ̄

2r2
h

)

+ O(~). (6.16)

For D = 4 the expression for the trace anomaly is known [41] and the integration can be

performed. We did this in our previous works for the Schwarzschild black hole [4, 21]. The

coefficient of the leading correction to entropy was found to be 1
90 for that case.

6.2 Topological Gauss-Bonnet AdS black holes

The metric coefficients g(r) = F (r) are given by (2.15). Substituting this in (6.11) one can

perform the contour integration around the event horizon (rh) and replacing Ω by the total

gravitational mass (M) we find the coefficient of the leading non-logarithmic correction to

the entropy as

βAdS
1 = −G[(D − 1)r4

h + (D − 3)kl2r2
h + (D − 5)α̃k2l2]

(r2
h + 2α̃k)(k + α̃k2

r2
h

+
r2
h

l2
)Σkl2

Im

∫

dDx
√−g〈T µ

µ〉(1). (6.17)

Therefore the expression of the corrected entropy is given by

SAdS
bh =

Σkr
(D−2)
h

4G~

(

1 +
D − 2

D − 4

2α̃k

r2
h

)

− (D − 1)r4
h + (D − 3)kl2r2

h + (D − 5)α̃k2l2

4l2(r2
h + 2α̃k)(k + α̃k2

r2
h

+
r2
h

l2
)

×

×
(
∫

dDx
√−g〈T µ

µ〉(1)
)

(

log

(

rD−2
h

G~

)

− (D − 2)α̃k

r2
h

)

+ O(~). (6.18)
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6.3 Gauss-Bonnet dS black holes

Let us first consider the corrected entropy associated with the black hole horizon (5.5).

Performing the contour integral in (6.11) around the black hole horizon and identifying Ω

as the gravitational AD mass (2.23), we get

βdS
1

∣

∣

bh
= −G[(D − 3)l2r2

h − (D − 1)r4
h + (D − 5)α̃l2]

AD−2(r2
h + 2α̃)(1 + α̃

r2
h

− r2
h

l2
)l2

Im

∫

dDx
√−g〈T µ

µ〉(1). (6.19)

Therefore the corrected entropy associated with the black hole horizon for the dS black

holes is given by

SdS
bh =

AD−2r
(D−2)
h

4G~

(

1 +
D − 2

D − 4

2α̃

r2
h

)

− (D − 3)r2
hl2 − (D − 1)r4

h + (D − 5)α̃l2

4l2(r2
h + 2α̃)(1 + α̃

r2
h

− r2
h

l2
)

×

×
(
∫

dDx
√−g〈T µ

µ〉(1)
)

(

log

(

rD−2
h

G~

)

− (D − 2)α̃

r2
h

)

+ O(~). (6.20)

For the cosmological horizon the identification of Ω is done with the BBM mass which

is just the negative of the AD mass with rc replacing rh. The coefficient of the leading

correction is then simplified as,

βdS
1

∣

∣

ch
= −G[(D − 3)l2r2

c − (D − 1)r4
c + (D − 5)α̃l2]

AD−2(r2
c + 2α̃)(1 + α̃k2

r2
c

− r2
c

l2 )l2
Im

∫

dDx
√−g〈T µ

µ〉(1). (6.21)

The corrected entropy of cosmological horizon of the Gauss-Bonnet dS black hole now

follows from (5.6) and (6.21),

SdS
ch =

AD−2r
(D−2)
c

4G~

(

1 +
D − 2

D − 4

2α̃

r2
c

)

+
(D − 5)α̃l2 − (D − 1)r4

c + (D − 3)l2r2
c

4l2(r2
c + 2α̃)(1 + α̃

r2
c

+ r2
c

l2
)

×

×
(
∫

dDx
√−g〈T µ

µ〉(1)
)(

log

(

rD−2
c

G~

)

− (D − 2)α̃

r2
c

)

+ O(~). (6.22)

7 Conclusions

Let us now summarize the work carried out in this paper. We showed, adopting the tun-

neling method advocated in [23, 24], that Lovelock black holes do emit scalar particles and

fermions with a perfect blackbody spectrum with a temperature given by the semiclassical

Hawking temperature. This result, which is a new finding, was derived for both black hole

(event) horizon and cosmological horizon of Lovelock black holes. It was also found that

in the presence of quantum corrections to the WKB ansatz the blackbody nature of the

modified radiation spectrum does not change. Greybody factors were absent, rather the

temperature received some corrections. We calculated the corrected Hawking temperature

for both the black hole (event) horizon and also for the cosmological horizon for different

spacetimes in Lovelock gravity.
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The temperature corresponding to the modified spectrum, as calculated by us, repro-

duced the Hawking temperature at the lowest order. Using the first law of thermodynamics

the modified entropy corresponding to the corrected Hawking temperatures was calculated

for different cases. It is a well known fact that Lovelock black holes do not obey the

semiclassical area law [8, 10, 12]. This modified semiclassical area law was reproduced

here as the lowest order contribution. One of the new results reported in this paper was

that the higher order corrections to entropy did not involve the famous logarithmic and

inverse area corrections. The modified corrections were shown to be a consequence of the

Gauss-Bonnet term. When the coupling constant of the Gauss-Bonnet term vanished one

was left with the semiclassical area law. Also, the standard logarithmic and inverse area

corrections were reproduced in the higher orders. We expressed the coefficient (β1) of the

leading (non logarithmic) correction in terms of the trace anomaly of the stress tensor by

making infinitesimal scale transformation of the metric coefficients.

Some useful definitions were summarised in the appendices. Particularly, Kruskal-like

extensions for the black hole (event) and cosmological horizons were performed here.
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A Kruskal-like extension for the black hole (event) horizon

To perform a Kruskal-like extension of a general chargeless, static metric (3.1), we first

define the tortoise coordinate as

r∗ =

∫

dr

g(r)
. (A.1)

It is known that the spacetime structure of the extended regions are extremely sensitive to

the different choices for g(r). In order to study the behaviors of the outgoing and ingoing

modes with respect to the black hole event horizon (rh) we actually need to see only the

behavior of the spacetime in a very narrow region just inside and outside of rh. Therefore,

for our purpose, we first take the near horizon limit of the metric coefficient,

g(r) = (r − rh)g′(rh) +
(r − rh)2

2
g′′(rh) + O(r − rh)3 (A.2)

In the following we shall consider two different cases for inside and outside (where an

observer is present) the event horizon to show that the same spacetime metric is valid in

both the regions.

Case I: when r = robs > rh (Outside the event horizon): At a distance (ρ) just outside

the horizon, r = rh + ρ, such that |ρ| ≪ rh, one has dr = dρ and

g(r) = ρg′(rh) +
ρ2

2
g′′(rh) + O(ρ3) (A.3)
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Therefore (A.1) can be integrated over this narrow region to yield

r∗obs =
1

g′(rh)
ln

[

ρ

g′(rh) + ρg′′(rh)/2

]

=
1

g′(rh)
ln

[

(r − rh)

g′(rh) + (r − rh)g′′(rh)/2

]

(A.4)

The advanced and retarded time coordinates, in this region, are usually defined by

vobs = tobs + r∗obs

uobs = tobs − r∗obs (A.5)

respectively. With these definitions (3.1) becomes

ds2 = −g(r)duobsdvobs + r2dΩ2
D−2 (A.6)

Now we make the following two successive coordinate transformations

Vobs = eκvobs

Uobs = −e−κuobs . (A.7)

Also,

Tobs =
(Vobs + Uobs)

2

Xobs =
(Vobs − Uobs)

2
, (A.8)

where κ is a constant that will be identified later with the surface gravity. With these

transformations we find the desired form of the r − t sector of the metric (3.1) in

Kruskal coordinates,

ds2 = −g(r)

κ2
e−2κr∗obs(dT 2

obs − dX2
obs). (A.9)

Putting the values of g(r) from (A.2) and r∗ from (A.4) into the spacetime interval (A.9)

and simplifying the pre-factor by choosing κ to be the surface gravity (κ = g′(rh)/2),

we find

ds2 =
4
(

g′(rh)2 + 3g′(rh)g′′(rh)
2 (r − rh) + g′′(rh)2

2 (r − rh)2
)

g′(rh)2
(−dT 2

obs + dX2
obs). (A.10)

Now using (A.7) and (A.8) we find the Kruskal-like coordinates which are valid outside the

event horizon where the observer is present, are given by

Tobs = eκr∗
obs sinh κtobs

Xobs = eκr∗obs cosh κtobs. (A.11)

This clearly shows, irrespective of choosing any particular g(r), at the event horizon (r = rh

or ρ = 0) one does not have any spacetime singularity in this Kruskal-like extension (A.10).
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Therefore one can easily make the extension of the spacetimes (2.5), (2.14) and (2.20) with

appropriate choice of coordinates. The same is true if one considers higher order terms

in the expansion (A.2). The only finite contribution to the interval (A.10) comes from

the linear term in the expansion (A.2) while others vanish at r = rh. This consistency is

essential for the calculation of the blackbody spectrum.

Case II: when r = rin < rh (Inside the event horizon): Let us now consider a situation

at a distance ρ inside the event horizon. Here r = rin = rh − ρ and dr = −dρ. Using the

same expansion (A.3) and integrating (A.1), we get the required expression for the tortoise

coordinate inside the event horizon,

r∗in =
1

g′(rh)
ln

[

ρ

g′(rh) − ρg′′(rh)/2

]

=
1

g′(rh)
ln

[

(rh − r)

g′(rh) − (rh − r)g′′(rh)/2

]

. (A.12)

Consider the following coordinate transformations,

vin = tin + r∗in

uin = tin − r∗in, (A.13)

and

Vin = eκvin

Uin = e−κuin. (A.14)

Also

Tin =
(Vin + Uin)

2

Xin =
(Vin − Uin)

2
. (A.15)

With these coordinate transformations in (3.1) we are finally left with a metric whose r− t

sector is given by

ds2 =
4
(

g′(rh)2 + 3g′(rh)g′′(rh)
2 (r − rh) + g′′(rh)2

2 (r − rh)2
)

g′(rh)2
(−dT 2

in + dX2
in). (A.16)

The new Kruskal coordinates which are valid inside the event horizon are now found

from (A.13), (A.14) and (A.15),

Tin = eκr∗in cosh κtin

Xin = eκr∗in sinh κtin. (A.17)

One can now realize that all the coordinate transformations used here are identical to

the previous case for r > rh except for the definition of Uin. There is a relative sign

difference between the functional choice of Uin and Uobs. This new definition ensures that
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the inner portion of the extended spacetime metric remains timelike. If one follows the

earlier definition he/she will end up with a spacelike metric interval which we want to

avoid because there is no coordinate singularity at the event horizon. Therefore one can

conclude that

ds2 =
4
(

g′(rh)2 + 3g′(rh)g′′(rh)
2 (r − rh) + g′′(rh)2

2 (r − rh)2
)

g′(rh)2
(−dT 2 + dX2) (A.18)

is the only metric which is valid in a narrow region on both sides of the event horizon

and the Kruskal coordinates outside (where the observer is present) and inside the event

horizon are defined by (A.11) and (A.17) respectively.

B Kruskal-like extension for the cosmological horizon

To see the behaviour of the spacetime (3.1) at the cosmological horizon it is required to

expand g(r) near the cosmological horizon (rh), given by

g(r) = (r − rc)g
′(rc) +

(r − rc)

2
g′′(rc) + O((r − rc)

3). (B.1)

The tortoise coordinates inside (where the observer is present; r = robs < rc) and outside

(r = rout > rc) the cosmological horizon are defined by

r∗obs =
1

g′(rc)
ln

[

(rc − r)

g′(rc) − (rc − r)g′′(rc)/2

]

(B.2)

and

r∗out =
1

g′(rc)
ln

[

(r − rc)

g′(rc) + (r − rc)g′′(rc)/2

]

(B.3)

respectively. The sets of null coordinates inside and outside the cosmological horizon are

defined as

vobs = tobs + r∗obs

uobs = tobs − r∗obs (B.4)

and

vout = tout + r∗out

uout = tout − r∗out (B.5)

respectively. Now by exactly mimicking the methodology developed for the case of black

hole horizon it can be shown that the metric

ds2 =
4
(

g′(rc)
2 + 3g′(rc)g′′(rc)

2 (r − rc) + g′′(rc)2

2 (r − rc)
2
)

g′(rc)2
(−dT 2 + dX2) (B.6)
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is defined both inside and outside the horizon. This is the analogue of (A.18). This time

the Kruskal-like coordinates in the region inside and outside the cosmological horizon are,

respectively, given by

Tobs = eκr∗obs cosh κtobs

Xobs = eκr∗obs sinhκtobs (B.7)

and

Tout = eκr∗out sinhκtout

Xout = eκr∗out sinhκtout, (B.8)

where κ = g′(rc)
2 is the surface gravity at the cosmological horizon.

C Identification of right and left moving modes

To identify different modes in different regions we use the following convention. If the

eigenvalue of the radial momentum operator p̂(r) , while acting on a specific solution of the

semiclassical (WKB) mode (3.10), is positive, then the mode is right-moving (outgoing).

Similarly a left-moving (incoming) mode corresponds to a negative eigenvalue. In this

convention the spacelike nature of p̂(r) must be kept unchanged in any region (i.e. inside

or outside the horizon) of the spacetime.

Black hole horizon: for all Lovelock black holes, considered in this paper, Ω (which

is the conserved quantity to the timelike Killing vector) is nothing but the mass (M) of

the black hole. In a region outside the event horizon (position of the observer) (r > rh),

p̂(r) = −i~ ∂
∂r and the left (L) or right (R) moving modes are found as

ΦL
obs = e−

i
~
Ωvobs (C.1)

ΦR
obs = e−

i
~
Ωuobs . (C.2)

To keep the spacelike nature of the momentum operator inside the black hole event horizon,

one must use the definition p̂(r) = i~ ∂
∂r . Using this one can identify

ΦL
in = e−

i
~
Ωvin (C.3)

ΦR
in = e−

i
~
Ωuin. (C.4)

as the left and right moving modes respectively.

Cosmological horizon: for the Gauss-Bonnet dS black hole we have an extra cosmolog-

ical horizon. Here Ω or equivalently the gravitational mass is given by the BBM mass [34]

which is negative. In a region inside the cosmological horizon where the observer is present

(rh < r < rc), p̂(r) = −i~ ∂
∂r , and one can identify the left and right moving modes as

ΦL
obs = e−

i
~
Ωuobs (C.5)

ΦR
obs = e−

i
~
Ωvobs . (C.6)
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Similarly outside the cosmological horizon (r > rc), one has p̂(r) = i~ ∂
∂r , therefore one finds

ΦL
out = e−

i
~
Ωuout (C.7)

ΦR
out = e−

i
~
Ωvout , (C.8)

as the left and right moving modes respectively.
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hole, Eur. Phys. J. C 33 (2004) 555 [hep-th/0309134] [SPIRES].

[17] G. ’t Hooft, The scattering matrix approach for the quantum black hole: an overview,

Int. J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [SPIRES];

S. Sarkar, S. Shankaranarayanan and L. Sriramkumar, Sub-leading contributions to the black

hole entropy in the brick wall approach, Phys. Rev. D 78 (2008) 024003 [arXiv:0710.2013]

[SPIRES].

[18] R. Banerjee and B.R. Majhi, Quantum tunneling and back reaction,

Phys. Lett. B 662 (2008) 62 [arXiv:0801.0200] [SPIRES];

R. Banerjee, B.R. Majhi and S. Samanta, Noncommutative black hole thermodynamics,

Phys. Rev. D 77 (2008) 124035 [arXiv:0801.3583] [SPIRES];

R. Banerjee, B.R. Majhi and S.K. Modak, Non-commutative Schwarzschild black hole and

area law, Class. Quant. Grav. 26 (2009) 085010 [arXiv:0802.2176] [SPIRES];

T. Ghosh and S. SenGupta, Tunneling across dilaton-axion black holes,

Phys. Lett. B 678 (2009) 112 [arXiv:0906.0686] [SPIRES].

[19] R. Banerjee and B.R. Majhi, Quantum tunneling beyond semiclassical approximation,

JHEP 06 (2008) 095 [arXiv:0805.2220] [SPIRES].

[20] S.K. Modak, Corrected entropy of BTZ black hole in tunneling approach,

Phys. Lett. B 671 (2009) 167 [arXiv:0807.0959] [SPIRES].

[21] R. Banerjee and B.R. Majhi, Quantum tunneling, trace anomaly and effective metric,

Phys. Lett. B 674 (2009) 218 [arXiv:0808.3688] [SPIRES].

[22] D.N. Page, Hawking radiation and black hole thermodynamics, New J. Phys. 7 (2005) 203

[hep-th/0409024] [SPIRES].

[23] R. Banerjee and B.R. Majhi, Hawking black body spectrum from tunneling mechanism,

Phys. Lett. B 675 (2009) 243 [arXiv:0903.0250] [SPIRES].

[24] R. Banerjee and B.R. Majhi, Connecting anomaly and tunneling methods for Hawking effect

through chirality, Phys. Rev. D 79 (2009) 064024 [arXiv:0812.0497] [SPIRES].

[25] M.K. Parikh and F. Wilczek, Hawking radiation as tunneling,

Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [SPIRES];

M.K. Parikh, A secret tunnel through the horizon, Int. J. Mod. Phys. D 13 (2004) 2351

[hep-th/0405160] [SPIRES].

[26] K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis,

Phys. Rev. D 60 (1999) 024007 [gr-qc/9812028] [SPIRES];

S. Shankaranarayanan, K. Srinivasan and T. Padmanabhan, Method of complex paths and

general covariance of Hawking radiation, Mod. Phys. Lett. A 16 (2001) 571 [gr-qc/0007022]

[SPIRES];

– 32 –

http://dx.doi.org/10.1088/0264-9381/19/9/302
http://arxiv.org/abs/hep-th/0111001
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0111001
http://dx.doi.org/10.1088/0264-9381/22/19/021
http://arxiv.org/abs/gr-qc/0410071
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0410071
http://dx.doi.org/10.1088/1126-6708/2002/05/026
http://arxiv.org/abs/hep-th/0205164
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0205164
http://dx.doi.org/10.1088/0264-9381/17/20/302
http://arxiv.org/abs/gr-qc/0005017
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0005017
http://dx.doi.org/10.1140/epjc/s2004-01648-1
http://arxiv.org/abs/hep-th/0309134
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0309134
http://dx.doi.org/10.1142/S0217751X96002145
http://arxiv.org/abs/gr-qc/9607022
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9607022
http://dx.doi.org/10.1103/PhysRevD.78.024003
http://arxiv.org/abs/0710.2013
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.2013
http://dx.doi.org/10.1016/j.physletb.2008.02.044
http://arxiv.org/abs/0801.0200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.0200
http://dx.doi.org/10.1103/PhysRevD.77.124035
http://arxiv.org/abs/0801.3583
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.3583
http://dx.doi.org/10.1088/0264-9381/26/8/085010
http://arxiv.org/abs/0802.2176
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.2176
http://dx.doi.org/10.1016/j.physletb.2009.05.063
http://arxiv.org/abs/0906.0686
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.0686
http://dx.doi.org/10.1088/1126-6708/2008/06/095
http://arxiv.org/abs/0805.2220
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.2220
http://dx.doi.org/10.1016/j.physletb.2008.11.043
http://arxiv.org/abs/0807.0959
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.0959
http://dx.doi.org/10.1016/j.physletb.2009.03.019
http://arxiv.org/abs/0808.3688
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.3688
http://dx.doi.org/10.1088/1367-2630/7/1/203
http://arxiv.org/abs/hep-th/0409024
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0409024
http://dx.doi.org/10.1016/j.physletb.2009.04.005
http://arxiv.org/abs/0903.0250
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.0250
http://dx.doi.org/10.1103/PhysRevD.79.064024
http://arxiv.org/abs/0812.0497
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0497
http://dx.doi.org/10.1103/PhysRevLett.85.5042
http://arxiv.org/abs/hep-th/9907001
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9907001
http://dx.doi.org/10.1142/S0218271804006498
http://arxiv.org/abs/hep-th/0405160
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405160
http://dx.doi.org/10.1103/PhysRevD.60.024007
http://arxiv.org/abs/gr-qc/9812028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9812028
http://dx.doi.org/10.1142/S0217732301003632
http://arxiv.org/abs/gr-qc/0007022
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0007022


J
H
E
P
1
1
(
2
0
0
9
)
0
7
3

E.C. Vagenas, Complex paths and covariance of Hawking radiation in 2D stringy black holes,

Nuovo Cim. B 117 (2002) 899 [hep-th/0111047] [SPIRES];

S. Shankaranarayanan, T. Padmanabhan and K. Srinivasan, Hawking radiation in different

coordinate settings: complex paths approach, Class. Quant. Grav. 19 (2002) 2671

[gr-qc/0010042] [SPIRES].

[27] B.R. Majhi, Fermion tunneling beyond semiclassical approximation,

Phys. Rev. D 79 (2009) 044005 [arXiv:0809.1508] [SPIRES];

H.M. Siahaan and Triyanta, Hawking radiation from a Vaidya black hole: a semi-classical

approach and beyond, arXiv:0811.1132 [SPIRES];

T. Zhu and J.-R. Ren, Quantum corrections to hawking radiation for a FRW universe,

arXiv:0811.4074 [SPIRES];

B.R. Majhi and S. Samanta, Hawking radiation due to photon and gravitino tunneling,

arXiv:0901.2258 [SPIRES];

K. Chiang, K. San-Min, P. Dan-Tao and F. Tsun, Hawking radiation as tunneling and the

first law of thermodynamics at apparent horizon in the FRW universe, arXiv:0812.3006

[SPIRES];

R. Banerjee, B.R. Majhi and D. Roy, Corrections to Unruh effect in tunneling formalism and

mapping with Hawking effect, arXiv:0901.0466 [SPIRES];

Y.-P. Hu, J.-Y. Zhang and Z. Zhao, A note on the Hawking radiation calculated by the quasi-

classical tunneling method, arXiv:0901.2680 [SPIRES];

T. Zhu, Ji-R. Ren and Ming-F. Li, Corrected entropy of high dimensional black holes,

arXiv:0906.4194 [SPIRES].

[28] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498

[SPIRES].

[29] D. Lovelock, The four-dimensionality of space and the Einstein tensor,

J. Math. Phys. 13 (1972) 874 [SPIRES].

[30] V. Iyer and R.M. Wald, Some properties of Nöther charge and a proposal for dynamical black
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